Functional implications of a novel EA2 mutation in the P/Q-type calcium channel.
نویسندگان
چکیده
Episodic ataxia type 2 (EA2) is an autosomal dominant condition characterized by paroxysmal attacks of ataxia, vertigo, and nausea, typically lasting minutes to days in duration. These symptoms can be prevented or significantly attenuated by the oral administration of acetazolamide; however, the mechanism by which acetazolamide ameliorates EA2 symptoms is unknown. EA2 typically results from nonsense mutations in the CACNA1A gene that encodes the alpha1A (Cav2.1) subunit of the P/Q-type calcium (Ca2+) channel. We have identified a novel H1736L missense mutation in the CACNA1A gene associated with the EA2 phenotype. This mutation is localized near the pore-forming region of the P/Q-type Ca2+ channel. Functional analysis of P/Q-type channels containing the mutation show that the H1736L alteration affects several channel properties, including reduced current density, increased rate of inactivation, and a shift in the voltage dependence of activation to more positive values. Although these findings are consistent with an overall loss of P/Q-type channel function, the mutation also caused some biophysical changes consistent with a gain of function. We also tested the direct effect of acetazolamide on both wild-type and H1736L mutated P/Q-type channels and did not observe any direct action on channel properties of this pharmacological agent used to treat EA2 patients.
منابع مشابه
Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2.
Familial hemiplegic migraine, episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 are allelic disorders of the CACNA1A gene (coding for the alpha(1A) subunit of P/Q calcium channels), usually associated with different types of mutations (missense, protein truncating, and expansion, respectively). However, the finding of expansion and missense mutations in patients with EA2 has blurr...
متن کاملDramatically different levels of Cacna1a gene expression between pre-weaning wild type and leaner mice.
Loss of function mutations of the CACNA1A gene, coding for the α1A subunit of P/Q type voltage-gated calcium channel (Ca(V)2.1), are responsible for Episodic Ataxia type 2 (EA2), an autosomal dominant disorder. A dominant negative effect of the EA2 mutated protein, rather than a haploinsufficiency mechanism, has been hypothesised both for protein-truncating and missense mutations. We analysed t...
متن کاملA destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels.
Channelopathies are often linked to defective protein folding and trafficking. Among them, the calcium channelopathy episodic ataxia type-2 (EA2) is an autosomal dominant disorder related to mutations in the pore-forming Ca(v)2.1 subunit of P/Q-type calcium channels. Although EA2 is linked to loss of Ca(v)2.1 channel activity, the molecular mechanism underlying dominant inheritance remains uncl...
متن کاملKCa channels as therapeutic targets in episodic ataxia type-2.
Episodic ataxia type-2 (EA2) is an inherited movement disorder caused by mutations in the gene encoding the Ca(v)2.1alpha1 subunit of the P/Q-type voltage-gated calcium channel that result in an overall reduction in the P/Q-type calcium current. A consequence of these mutations is loss of precision of pacemaking in cerebellar Purkinje cells. This diminished precision reduces the information enc...
متن کاملTwo novel CACNA1A gene mutations associated with episodic ataxia type 2 and interictal dystonia.
BACKGROUND Episodic ataxia type 2 (EA2) is an autosomal dominant condition that results from mutations in the CACNA1A gene. It is characterized by episodes of ataxia and nystagmus that typically last hours. OBJECTIVE To describe the clinical and genetic features of 2 unrelated patients who developed EA2 in childhood and late-onset dystonia. DESIGN Pedigree study. SETTING University academ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of neurology
دوره 56 2 شماره
صفحات -
تاریخ انتشار 2004